skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Welser, Kay"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Powerful digital grasping is essential for primates navigating arboreal environments and is often regarded as a defining characteristic of the order. However,in vivodata on primate grip strength are limited. In this study, we collected grasping data from the hands and feet of eleven strepsirrhine species to assess how ecomorphological variables—such as autopodial shape, laterality, body mass and locomotor mode—influence grasping performance. Additionally, we derived anatomical estimates of grip force from cadaveric material to determine whetherin vivoandex vivogrip strength measurements follow similar scaling relationships and how they correlate. Results show that bothin vivoand anatomical grip strength scale positively with body mass, though anatomical measures may overestimatein vivoperformance. Species with wider autopodia tend to exhibit higher grip forces, and forelimb grip forces exceed those of the hindlimbs. No lateralization in grip strength was observed. While strepsirrhine grip forces relative to their body weight are comparable to those of other primates and slightly exceed those of humans, they are not exceptional compared to other arboreal mammals or birds, suggesting that claims of extraordinary primate grasping abilities require further investigation. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract The dwarf lemurs (Cheirogaleusspp.) of Madagascar are the only obligate hibernators among primates. Despite century‐old field accounts of seasonal lethargy, and more recent evidence of hibernation in the western fat‐tailed dwarf lemur (Cheirogaleus medius), inducing hibernation in captivity remained elusive for decades. This included the Duke Lemur Center (DLC), which maintains fat‐tailed dwarf lemurs and has produced sporadic research on reproduction and metabolism. With cumulative knowledge from the field, a newly robust colony, and better infrastructure, we recently induced hibernation in DLC dwarf lemurs. We describe two follow‐up experiments in subsequent years. First, we show that dwarf lemurs under stable cold conditions (13°C) with available food continued to eat daily, expressed shallower and shorter torpor bouts, and had a modified gut microbiome compared to peers without food. Second, we demonstrate that dwarf lemurs under fluctuating temperatures (12–30°C) can passively rewarm daily, which was associated with altered patterns of fat depletion and reduced oxidative stress. Despite the limitations of working with endangered primates, we highlight the promise of studying hibernation in captive dwarf lemurs. Follow‐up studies on genomics and epigenetics, metabolism, and endocrinology could have relevance across multidisciplinary fields, from biomedicine to evolutionary biology, and conservation. 
    more » « less
  3. Feast-fast cycles allow animals to live in seasonal environments by promoting fat storage when food is plentiful and lipolysis when food is scarce. Fat-storing hibernators have mastered this cycle over a circannual schedule, by undergoing extreme fattening to stockpile fuel for the ensuing hibernation season. Insulin is intrinsic to carbohydrate and lipid metabolism and is central to regulating feast-fast cycles in mammalian hibernators. Here, we examine glucose and insulin dynamics across the feast-fast cycle in fat-tailed dwarf lemurs, the only obligate hibernator among primates. Unlike cold-adapted hibernators, dwarf lemurs inhabit tropical forests in Madagascar and hibernate under various temperature conditions. Using the captive colony at the Duke Lemur Center, we determined fasting glucose and insulin, and glucose tolerance, in dwarf lemurs across seasons. During the lean season, we maintained dwarf lemurs under stable warm, stable cold, or fluctuating ambient temperatures that variably included food provisioning or deprivation. Overall, we find that dwarf lemurs can show signatures of reversible, lean-season insulin resistance. During the fattening season prior to hibernation, dwarf lemurs had low glucose, insulin, and HOMA-IR despite consuming high-sugar diets. In the active season after hibernation, glucose, insulin, HOMA-IR, and glucose tolerance all increased, highlighting the metabolic processes at play during periods of weight gainversusweight loss. During the lean season, glucose remained low, but insulin and HOMA-IR increased, particularly in animals kept under warm conditions with daily food. Moreover, these lemurs had the greatest glucose intolerance in our study and had average HOMA-IR values consistent with insulin resistance (5.49), while those without food under cold (1.95) or fluctuating (1.17) temperatures did not. Remarkably low insulin in dwarf lemurs under fluctuating temperatures raises new questions about lipid metabolism when animals can passively warm and cool rather than undergo sporadic arousals. Our results underscore that seasonal changes in insulin and glucose tolerance are likely hallmarks of hibernating mammals. Because dwarf lemurs can hibernate under a range of conditions in captivity, they are an emerging model for primate metabolic flexibility with implications for human health. 
    more » « less